A lower bound for the Chung-Diaconis-Graham random process

نویسنده

  • Martin Hildebrand
چکیده

Chung, Diaconis, and Graham considered random processes of the form Xn+1 = anXn + bn (mod p) where p is odd, X0 = 0, an = 2 always, and bn are i.i.d. for n = 0, 1, 2, . . .. In this paper, we show that if P (bn = −1) = P (bn = 0) = P (bn = 1) = 1/3, then there exists a constant c > 1 such that c log2 p steps are not enough to make Xn get close to uniformly distributed on the integers mod p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Chung-diaconis-graham Random Pro- Cess

Abstract Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn + bn (mod p) where X0 = 0, p is odd, and bn for n = 0, 1, 2, . . . are i.i.d. random variables on {−1, 0, 1}. If Pr(bn = −1) = Pr(bn = 1) = β and Pr(bn = 0) = 1− 2β, they asked which value of β makes Xn get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results...

متن کامل

On a Question of Chung, Diaconis, and Graham

Chung, Diaconis, and Graham considered random processes of the form Xn+1 = 2Xn + bn (mod p) where X0 = 0, p is odd, and bn for n = 0, 1, 2, . . . are i.i.d. random variables on {−1, 0, 1}. If Pr(bn = −1) = Pr(bn = 1) = β and Pr(bn = 0) = 1 − 2β, they asked which value of β makes Xn get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results of Chun...

متن کامل

A note on an alternating upper bound for random walks on semigroups

We consider random walks on idempotent semigroups, called Left Regular Bands, satisfying the relation xyx = xy for any two elements x and y of the semigroup. We give an alternating upper bound for the total variation distance of a random walk on a Left Regular Band semigroup, improving the previous bound by Brown and Diaconis.

متن کامل

Universal cycles for combinatorial structures

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

Universal structures Fan Chung cycles for combinatorial

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008